
c06 – Fourier Transforms c06fpc

nag fft multiple real (c06fpc)

1. Purpose

nag fft multiple real (c06fpc) computes the discrete Fourier transforms of m sequences, each
containing n real data values.

2. Specification

#include <nag.h>
#include <nagc06.h>

void nag_fft_multiple_real(Integer m, Integer n, double x[],
double trig[], NagError *fail)

3. Description

Given m sequences of n real data values xp
j , for j = 0, 1, . . . , n − 1; p = 1, 2, . . . , m, this function

simultaneously calculates the Fourier transforms of all the sequences defined by

ẑp
k =

1√
n

n−1∑

j=0

xp
j exp(−2πijk/n), for k = 0, 1, . . . , n − 1; p = 1, 2, . . . , m.

(Note the scale factor 1/
√

n in this definition.)

The transformed values ẑp
k are complex, but for each value of p the ẑp

k form a Hermitian sequence
(i.e., ẑp

n−k is the complex conjugate of ẑp
k), so they are completely determined by mn real numbers.

The first call of nag fft multiple real must be preceded by a call to nag fft init trig (c06gzc) to
initialise the array trig with trigonometric coefficients according to the value of n.

The discrete Fourier transform is sometimes defined using a positive sign in the exponential term

ẑp
k =

1√
n

n−1∑

j=0

xp
j exp(+2πijk/n).

To compute this form, this function should be followed by a call to nag multiple conjugate hermitian
(c06gqc) to form the complex conjugates of the ẑp

k.

The function uses a variant of the fast Fourier transform algorithm (Brigham 1974) known as
the Stockham self-sorting algorithm, which is described in Temperton (1983). Special coding is
provided for the factors 2, 3, 4, 5 and 6.

4. Parameters

m
Input: the number of sequences to be transformed, m.
Constraint: m ≥ 1.

n
Input: the number of real values in each sequence, n.
Constraint: n ≥ 1.

x[m∗n]
Input: the m data sequences must be stored in x consecutively. If the data values of the pth
sequence to be transformed are denoted by xp

j , for j = 0, 1, . . . , n − 1, then the mn elements
of the array x must contain the values

x1
0, x

1
1, . . . , x

1
n−1, x2

0, x
2
1, . . . , x

2
n−1, . . . , xm

0 , xm
1 , . . . , xm

n−1.

Output: the m discrete Fourier transforms in Hermitian form, stored consecutively,
overwriting the corresponding original sequences. If the n components of the discrete Fourier
transform ẑp

k are written as ap
k+ibp

k, then for 0 ≤ k ≤ n/2, ap
k is in array element x[(p−1)∗n+k]

and for 1 ≤ k ≤ (n − 1)/2, bp
k is in array element x[(p − 1) ∗ n + n − k].

[NP3275/5/pdf] 3.c06fpc.1



nag fft multiple real NAG C Library Manual

trig[2∗n]
Input: trigonometric coefficients as returned by a call of nag fft init trig (c06gzc).
nag fft multiple real makes a simple check to ensure that trig has been initialised and that
the initialisation is compatible with the value of n.

fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

NE INT ARG LT
On entry, m must not be less than 1: m = 〈value〉.
On entry, n must not be less than 1: n = 〈value〉.

NE C06 NOT TRIG
Value of n and trig array are incompatible or trig array not initialised.

NE ALLOC FAIL
Memory allocation failed.

6. Further Comments
The time taken by the function is approximately proportional to nm logn, but also depends on the
factors of n. The function is fastest if the only prime factors of n are 2, 3 and 5, and is particularly
slow if n is a large prime, or has large prime factors.

6.1. Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and
comparing the results with the original sequence (in exact arithmetic they would be identical).

6.2. References

Brigham E O (1974) The Fast Fourier Transform Prentice-Hall.
Temperton C (1983) Fast Mixed-radix Real Fourier Transforms J. Comput. Phys. 52 340–350.

7. See Also

nag multiple conjugate hermitian (c06gqc)
nag fft init trig (c06gzc)

8. Example

This program reads in sequences of real data values and prints their discrete Fourier
transforms (as computed by nag fft multiple real). The Fourier transforms are expanded
into full complex form using nag multiple hermitian to complex (c06gsc) and printed. Inverse
transforms are then calculated by calling nag multiple conjugate hermitian (c06gqc) followed by
nag fft multiple hermitian (c06fqc) showing that the original sequences are restored.

8.1. Program Text

/* nag_fft_multiple_real(c06fpc) Example Program
*
* Copyright 1990 Numerical Algorithms Group.
*
* Mark 1, 1990.
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagc06.h>

#define MMAX 5
#define NMAX 20

3.c06fpc.2 [NP3275/5/pdf]



c06 – Fourier Transforms c06fpc

main()
{
double trig[2*NMAX];
Integer i, j, m, n;
double u[MMAX*NMAX], v[MMAX*NMAX];
double x[MMAX*NMAX];

Vprintf("c06fpc Example Program Results\n");
/* Skip heading in data file */
Vscanf("%*[^\n]");
while (scanf("%ld%ld", &m, &n)!=EOF)

if (m<=MMAX && n<=NMAX)
{
Vprintf("\n\nm = %2ld n = %2ld\n", m, n);
/* Read in data and print out. */
for (j = 0; j<m; ++j)
for (i = 0; i<n; ++i)
Vscanf("%lf", &x[j*n + i]);

Vprintf("\nOriginal data values\n\n");
for (j = 0; j<m; ++j)
{
Vprintf(" ");
for (i = 0; i<n; ++i)
Vprintf("%10.4f%s", x[j*n + i],

(i%6==5 && i!=n-1 ? "\n " : ""));
Vprintf("\n");

}
c06gzc(n, trig, NAGERR_DEFAULT); /* Initialise trig array */
/* Calculate transforms */
c06fpc(m, n, x, trig, NAGERR_DEFAULT);
Vprintf("\nDiscrete Fourier transforms in Hermitian format\n\n");
for (j = 0; j<m; ++j)
{
Vprintf(" ");
for (i = 0; i<n; ++i)
Vprintf("%10.4f%s", x[j*n + i],

(i%6==5 && i!=n-1 ? "\n " : ""));
Vprintf("\n");

}
/* Calculate full complex form of Hermitian result */
c06gsc(m, n, x, u, v, NAGERR_DEFAULT);
Vprintf("\nFourier transforms in full complex form\n\n");
for (j = 0; j<m; ++j)
{
Vprintf("Real");
for (i = 0; i<n; ++i)
Vprintf("%10.4f%s", u[j*n + i],

(i%6==5 && i!=n-1 ? "\n " : ""));
Vprintf("\nImag");
for (i = 0; i<n; ++i)
Vprintf("%10.4f%s", v[j*n + i],

(i%6==5 && i!=n-1 ? "\n " : ""));
Vprintf("\n\n");

}
/* Calculate inverse transforms */
/* Conjugate Hermitian sequences of transforms */
c06gqc(m, n, x, NAGERR_DEFAULT);
/* Transform to give inverse transforms */
c06fqc(m, n, x, trig, NAGERR_DEFAULT);
Vprintf ("\nOriginal data as restored by inverse transform\n\n");
for (j = 0; j<m; ++j)
{
Vprintf(" ");
for (i = 0; i<n; ++i)
Vprintf("%10.4f%s", x[j*n + i],

(i%6==5 && i!=n-1 ? "\n " : ""));
Vprintf("\n");

}
}

else

[NP3275/5/pdf] 3.c06fpc.3



nag fft multiple real NAG C Library Manual

Vfprintf(stderr,"\nInvalid value of m or n.\n");
exit(EXIT_SUCCESS);

}

8.2. Program Data

c06fpc Example Program Data
3 6
0.3854 0.6772 0.1138 0.6751 0.6362 0.1424
0.5417 0.2983 0.1181 0.7255 0.8638 0.8723
0.9172 0.0644 0.6037 0.6430 0.0428 0.4815

8.3. Program Results

c06fpc Example Program Results

m = 3 n = 6

Original data values

0.3854 0.6772 0.1138 0.6751 0.6362 0.1424
0.5417 0.2983 0.1181 0.7255 0.8638 0.8723
0.9172 0.0644 0.6037 0.6430 0.0428 0.4815

Discrete Fourier transforms in Hermitian format

1.0737 -0.1041 0.1126 -0.1467 -0.3738 -0.0044
1.3961 -0.0365 0.0780 -0.1521 -0.0607 0.4666
1.1237 0.0914 0.3936 0.1530 0.3458 -0.0508

Fourier transforms in full complex form

Real 1.0737 -0.1041 0.1126 -0.1467 0.1126 -0.1041
Imag 0.0000 -0.0044 -0.3738 0.0000 0.3738 0.0044

Real 1.3961 -0.0365 0.0780 -0.1521 0.0780 -0.0365
Imag 0.0000 0.4666 -0.0607 0.0000 0.0607 -0.4666

Real 1.1237 0.0914 0.3936 0.1530 0.3936 0.0914
Imag 0.0000 -0.0508 0.3458 0.0000 -0.3458 0.0508

Original data as restored by inverse transform

0.3854 0.6772 0.1138 0.6751 0.6362 0.1424
0.5417 0.2983 0.1181 0.7255 0.8638 0.8723
0.9172 0.0644 0.6037 0.6430 0.0428 0.4815

3.c06fpc.4 [NP3275/5/pdf]


	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction



